Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 258
Filtrar
1.
Medicina (Kaunas) ; 60(4)2024 Apr 16.
Artículo en Inglés | MEDLINE | ID: mdl-38674283

RESUMEN

Background and Objectives: Drug resistant epilepsy (DRE) is a major hurdle in epilepsy, which hinders clinical care, patients' management and treatment outcomes. DRE may partially result from genetic variants that alter proteins responsible for drug targets and drug transporters in the brain. We aimed to examine the relationship between SCN1A, GABRA1 and ABCB1 polymorphism and drug response in epilepsy children in Vietnam. Materials and Methods: In total, 213 children diagnosed with epilepsy were recruited in this study (101 were drug responsive and 112 were drug resistant). Sanger sequencing had been performed in order to detect six single nucleotide polymorphisms (SNPs) belonging to SCN1A (rs2298771, rs3812718, rs10188577), GABRA1 (rs2279020) and ABCB1 (rs1128503, rs1045642) in study group. The link between SNPs and drug response status was examined by the Chi-squared test or the Fisher's exact test. Results: Among six investigated SNPs, two SNPs showed significant difference between the responsive and the resistant group. Among those, heterozygous genotype of SCN1A rs2298771 (AG) were at higher frequency in the resistant patients compared with responsive patients, playing as risk factor of refractory epilepsy. Conversely, the heterozygous genotype of SCN1A rs3812718 (CT) was significantly lower in the resistant compared with the responsive group. No significant association was found between the remaining four SNPs and drug response. Conclusions: Our study demonstrated a significant association between the SCN1A genetic polymorphism which increased risk of drug-resistant epilepsy in Vietnamese epileptic children. This important finding further supports the underlying molecular mechanisms of SCN1A genetic variants in the pathogenesis of drug-resistant epilepsy in children.


Asunto(s)
Subfamilia B de Transportador de Casetes de Unión a ATP , Anticonvulsivantes , Epilepsia , Canal de Sodio Activado por Voltaje NAV1.1 , Polimorfismo de Nucleótido Simple , Receptores de GABA-A , Humanos , Canal de Sodio Activado por Voltaje NAV1.1/genética , Vietnam , Masculino , Femenino , Niño , Subfamilia B de Transportador de Casetes de Unión a ATP/genética , Preescolar , Epilepsia/genética , Epilepsia/tratamiento farmacológico , Receptores de GABA-A/genética , Anticonvulsivantes/uso terapéutico , Epilepsia Refractaria/genética , Epilepsia Refractaria/tratamiento farmacológico , Lactante , Genotipo , Adolescente , Pueblos del Sudeste Asiático
2.
Zhonghua Bing Li Xue Za Zhi ; 53(5): 419-424, 2024 May 08.
Artículo en Chino | MEDLINE | ID: mdl-38678320

RESUMEN

With rapid development of genetic testing techniques, neuroimaging and neuroelectrophysiological technologies, our understanding of malformations of cortical development continues to be deepened and updated. In particular, mutations in genes related to the mammalian target of rapamycin (mTOR) signaling pathway have been successively discovered in focal cortical dysplasia (FCD). At the same time, the classification consensus on FCD issued by the International League Against Epilepsy (ILAE) in 2011 has encountered problems and challenges in diagnostic practice. Therefore, in 2022, ILAE proposed an updated version of the FCD classification based on the progress in molecular genetics over the past decade. The main addition to the classification system is "white matter lesions, " and it is also suggested to integrate histopathological, neuroimaging, and molecular testing results for multi-level integrated diagnosis to achieve reliable, clinically relevant, and therapeutic targeted final diagnosis.


Asunto(s)
Malformaciones del Desarrollo Cortical , Serina-Treonina Quinasas TOR , Humanos , Malformaciones del Desarrollo Cortical/genética , Malformaciones del Desarrollo Cortical/patología , Malformaciones del Desarrollo Cortical/diagnóstico por imagen , Serina-Treonina Quinasas TOR/metabolismo , Serina-Treonina Quinasas TOR/genética , Epilepsia Refractaria/patología , Epilepsia Refractaria/genética , Mutación , Corteza Cerebral/patología , Corteza Cerebral/diagnóstico por imagen , Corteza Cerebral/metabolismo , Sustancia Blanca/patología , Sustancia Blanca/diagnóstico por imagen , Neuroimagen/métodos
3.
Epilepsia ; 65(5): 1451-1461, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38491957

RESUMEN

OBJECTIVE: The contribution of somatic variants to epilepsy has recently been demonstrated, particularly in the etiology of malformations of cortical development. The aim of this study was to determine the diagnostic yield of somatic variants in genes that have been previously associated with a somatic or germline epilepsy model, ascertained from resected brain tissue from patients with multidrug-resistant focal epilepsy. METHODS: Forty-two patients were recruited across three categories: (1) malformations of cortical development, (2) mesial temporal lobe epilepsy with hippocampal sclerosis, and (3) nonlesional focal epilepsy. Participants were subdivided based on histopathology of the resected brain. Paired blood- and brain-derived DNA samples were sequenced using high-coverage targeted next generation sequencing to high depth (585× and 1360×, respectively). Variants were identified using Genome Analysis ToolKit (GATK4) MuTect-2 and confirmed using high-coverage Amplicon-EZ sequencing. RESULTS: Sequence data on 41 patients passed quality control. Four somatic variants were validated following amplicon sequencing: within CBL, ALG13, MTOR, and FLNA. The diagnostic yield across 41 patients was 10%, 9% in mesial temporal lobe epilepsy with hippocampal sclerosis and 20% in malformations of cortical development. SIGNIFICANCE: This study provides novel insights into the etiology of mesial temporal lobe epilepsy with hippocampal sclerosis, highlighting a potential pathogenic role of somatic variants in CBL and ALG13. We also report candidate diagnostic somatic variants in FLNA in focal cortical dysplasia, while providing further insight into the importance of MTOR and related genes in focal cortical dysplasia. This work demonstrates the potential molecular diagnostic value of variants in both germline and somatic epilepsy genes.


Asunto(s)
Epilepsia Refractaria , Epilepsia del Lóbulo Temporal , Hipocampo , Esclerosis , Humanos , Epilepsia del Lóbulo Temporal/genética , Epilepsia del Lóbulo Temporal/patología , Hipocampo/patología , Esclerosis/genética , Esclerosis/patología , Epilepsia Refractaria/genética , Epilepsia Refractaria/etiología , Epilepsia Refractaria/patología , Femenino , Masculino , Adulto , Adulto Joven , Adolescente , Malformaciones del Desarrollo Cortical/genética , Malformaciones del Desarrollo Cortical/complicaciones , Malformaciones del Desarrollo Cortical/patología , Niño , Filaminas/genética , Persona de Mediana Edad , Preescolar , Variación Genética/genética , Esclerosis del Hipocampo
4.
Ital J Pediatr ; 50(1): 50, 2024 Mar 13.
Artículo en Inglés | MEDLINE | ID: mdl-38481309

RESUMEN

BACKGROUND: To analyze the etiological distribution characteristics of drug-resistant epilepsy (DRE) in children, with the aim of providing valuable perspectives to enhance clinical practice. METHODS: In this retrospective study, clinical data were collected on 167 children with DRE who were hospitalized between January 2020 and December 2022, including gender, age of onset, seizure types, video electroencephalogram(VEEG) recordings, neuroimaging, and genetic testing results. Based on the etiology of epilepsy, the enrolled children were categorized into different groups. The rank-sum test was conducted to compare the age of onset for different etiologies. RESULTS: Of the 167 cases, 89 (53.3%) had a clear etiology. Among them, structural factors account for 23.4%, genetic factors for 19.2%, multiple factors for 7.2%, and immunological factors for 3.6%. The age of onset was significantly earlier in children with genetic causes than those with structural (P < 0.001) or immunological (P = 0.001) causes. CONCLUSIONS: More than half of children with DRE have a distinct underlying cause, predominantly attributed to structural factors, followed by genetic factors. Genetic etiology primarily manifests at an early age, especially among children aged less than one year. This underscores the need for proactive enhancements in genetic testing to unveil the underlying causes and subsequently guide treatment protocols.


Asunto(s)
Epilepsia Refractaria , Epilepsia , Niño , Humanos , Estudios Retrospectivos , Epilepsia Refractaria/etiología , Epilepsia Refractaria/genética , Epilepsia/diagnóstico , Epilepsia/etiología , Epilepsia/tratamiento farmacológico , Convulsiones , Electroencefalografía/métodos
5.
Epilepsy Behav ; 153: 109716, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38508103

RESUMEN

OBJECTIVE: This study investigates the prevalence of pathogenic variants in the mechanistic target of rapamycin (mTOR) pathway in surgical specimens of malformations of cortical development (MCDs) and cases with negative histology. The study also aims to evaluate the predictive value of genotype-histotype findings on the surgical outcome. METHODS: The study included patients with drug-resistant focal epilepsy who underwent epilepsy surgery. Cases were selected based on histopathological diagnosis, focusing on MCDs and negative findings. We included brain tissues both as formalin-fixed, paraffin-embedded (FFPE) or fresh frozen (FF) samples. Single-molecule molecular inversion probes (smMIPs) analysis was conducted, targeting the MTOR gene in FFPE samples and 10 genes within the mTOR pathway in FF samples. Correlations between genotype-histotype and surgical outcome were examined. RESULTS: We included 78 patients for whom we obtained 28 FFPE samples and 50 FF tissues. Seventeen pathogenic variants (22 %) were identified and validated, with 13 being somatic within the MTOR gene and 4 germlines (2 DEPDC5, 1 TSC1, 1 TSC2). Pathogenic variants in mTOR pathway genes were exclusively found in FCDII and TSC cases, with a significant association between FCD type IIb and MTOR genotype (P = 0.003). Patients carrying mutations had a slightly better surgical outcome than the overall cohort, however it results not significant. The FCDII diagnosed cases more frequently had normal neuropsychological test, a higher incidence of auras, fewer multiple seizure types, lower occurrence of seizures with awareness impairment, less ictal automatisms, fewer Stereo-EEG investigations, and a longer period long-life of seizure freedom before surgery. SIGNIFICANCE: This study confirms that somatic MTOR variants represent the primary genetic alteration detected in brain specimens from FCDII/TSC cases, while germline DEPDC5, TSC1/TSC2 variants are relatively rare. Systematic screening for these mutations in surgically treated patients' brain specimens can aid histopathological diagnoses and serve as a biomarker for positive surgical outcomes. Certain clinical features associated with pathogenic variants in mTOR pathway genes may suggest a genetic etiology in FCDII patients.


Asunto(s)
Epilepsia Refractaria , Epilepsias Parciales , Epilepsia , Malformaciones del Desarrollo Cortical de Grupo I , Malformaciones del Desarrollo Cortical , Adulto , Humanos , Epilepsia Refractaria/genética , Epilepsia Refractaria/cirugía , Serina-Treonina Quinasas TOR , Epilepsias Parciales/genética , Epilepsias Parciales/diagnóstico , Convulsiones , Células Germinativas/patología , Malformaciones del Desarrollo Cortical/patología
6.
Nat Commun ; 15(1): 2180, 2024 Mar 11.
Artículo en Inglés | MEDLINE | ID: mdl-38467626

RESUMEN

Epilepsy is a chronic and heterogenous disease characterized by recurrent unprovoked seizures, that are commonly resistant to antiseizure medications. This study applies a transcriptome network-based approach across epilepsies aiming to improve understanding of molecular disease pathobiology, recognize affected biological mechanisms and apply causal reasoning to identify therapeutic hypotheses. This study included the most common drug-resistant epilepsies (DREs), such as temporal lobe epilepsy with hippocampal sclerosis (TLE-HS), and mTOR pathway-related malformations of cortical development (mTORopathies). This systematic comparison characterized the global molecular signature of epilepsies, elucidating the key underlying mechanisms of disease pathology including neurotransmission and synaptic plasticity, brain extracellular matrix and energy metabolism. In addition, specific dysregulations in neuroinflammation and oligodendrocyte function were observed in TLE-HS and mTORopathies, respectively. The aforementioned mechanisms are proposed as molecular hallmarks of DRE with the identified upstream regulators offering opportunities for drug-target discovery and development.


Asunto(s)
Epilepsia Refractaria , Epilepsia del Lóbulo Temporal , Humanos , Redes Reguladoras de Genes , Hipocampo/metabolismo , Epilepsia del Lóbulo Temporal/tratamiento farmacológico , Epilepsia del Lóbulo Temporal/genética , Convulsiones/metabolismo , Epilepsia Refractaria/tratamiento farmacológico , Epilepsia Refractaria/genética
7.
Epilepsia Open ; 9(2): 800-807, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38366963

RESUMEN

Genetic variants in relevant genes coexisting with MRI lesions in children with drug-resistant epilepsy (DRE) can negatively influence epilepsy surgery outcomes. Still, presurgical evaluation does not include genetic diagnostics routinely. Here, we report our presurgical evaluation algorithm that includes routine genetic testing. We analyzed retrospectively the data of 68 children with DRE operated at a mean age of 7.8 years (IQR: 8.1 years) at our center. In 49 children, genetic test results were available. We identified 21 gene variants (ACMG III: n = 7, ACMG IV: n = 2, ACMG V: n = 12) in 19 patients (45.2%) in the genes TSC1, TSC2, MECP2, DEPDC5, HUWE1, GRIN1, ASH1I, TRIO, KIF5C, CDON, ANKD11, TGFBR2, ATN1, COL4A1, JAK2, KCNQ2, ATP1A2, and GLI3 by whole-exome sequencing as well as deletions and duplications by array CGH in six patients. While the results did not change the surgery indication, they supported counseling with respect to postoperative chance of seizure freedom and weaning of antiseizure medication (ASM). The presence of genetic findings leads to the postoperative retention of at least one ASM. In our cohort, the International League against Epilepsy (ILAE) seizure outcome did not differ between patients with and without abnormal genetic findings. However, in the 7/68 patients with an unsatisfactory ILAE seizure outcome IV or V 12 months postsurgery, 2 had an abnormal or suspicious genetic finding as a putative explanation for persisting seizures postsurgery, and 3 had received palliative surgery including one TSC patient. This study highlights the importance of genetic testing in children with DRE to address putative underlying germline variants as genetic epilepsy causes or predisposing factors that guide patient and/or parent counseling on a case-by-case with respect to their individual chance of postoperative seizure freedom and ASM weaning. PLAIN LANGUAGE SUMMARY: Genetic variants in children with drug-resistant epilepsy (DRE) can negatively influence epilepsy surgery outcomes. However, presurgical evaluation does not include genetic diagnostics routinely. This retrospective study analyzed the genetic testing results of the 68 pediatric patients who received epilepsy surgery in our center. We identified 21 gene variants by whole-exome sequencing as well as deletions and duplications by array CGH in 6 patients. These results highlight the importance of genetic testing in children with DRE to guide patient and/or parent counseling on a case-by-case with respect to their individual chance of postoperative seizure freedom and ASM weaning.


Asunto(s)
Epilepsia Refractaria , Epilepsia , Humanos , Niño , Estudios Retrospectivos , Resultado del Tratamiento , Epilepsia/diagnóstico , Epilepsia/genética , Epilepsia/cirugía , Convulsiones/tratamiento farmacológico , Epilepsia Refractaria/genética , Epilepsia Refractaria/cirugía , Pruebas Genéticas , Proteínas Supresoras de Tumor/genética , Proteínas Supresoras de Tumor/uso terapéutico , Ubiquitina-Proteína Ligasas/uso terapéutico , Cinesinas
8.
BMC Pediatr ; 24(1): 96, 2024 Feb 03.
Artículo en Inglés | MEDLINE | ID: mdl-38310242

RESUMEN

BACKGROUND: NARS2 as a member of aminoacyl-tRNA synthetases was necessary to covalently join a specific tRNA to its cognate amino acid. Biallelic variants in NARS2 were reported with disorders such as Leigh syndrome, deafness, epilepsy, and severe myopathy. CASE PRESENTATION: Detailed clinical phenotypes were collected and the NARS2 variants were discovered by whole exome sequencing and verified by Sanger sequencing. Additionally, 3D protein structure visualization was performed by UCSF Chimera. The proband in our study had early-onset status epilepticus with abnormal EEG and MRI results. She also performed global developmental delay (GDD) and myocardial dysfunction. Next-generation sequencing (NGS) and Sanger sequencing revealed compound heterozygous missense variants [NM_024678.6:exon14: c.1352G > A(p.Arg451His); c.707T > C(p.Phe236Ser)] of the NARS2 gene. The proband develops refractory epilepsy with GDD and hyperlactatemia. Unfortunately, she finally died for status seizures two months later. CONCLUSION: We discovered two novel missense variants of NARS2 in a patient with early-onset status epilepticus and myocardial dysfunction. The NGS enables the patient to be clearly diagnosed as combined oxidative phosphorylation deficiency 24 (COXPD24, OMIM:616,239), and our findings expands the spectrum of gene variants in COXPD24.


Asunto(s)
Aspartato-ARNt Ligasa , Epilepsia Refractaria , Epilepsia , Estado Epiléptico , Femenino , Humanos , Estado Epiléptico/diagnóstico , Estado Epiléptico/genética , Epilepsia Refractaria/genética , Mutación Missense , ARN de Transferencia , Mutación , Aspartato-ARNt Ligasa/genética
9.
J Neurol ; 271(5): 2503-2508, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38261030

RESUMEN

We evaluated the utility of genetic testing in the pre-surgical evaluation of pediatric patients with drug-resistant focal epilepsy. This single-center retrospective study reviewed the charts of all pediatric patients referred for epilepsy surgery evaluation over a 5-year period. We extracted and analyzed results of genetic testing as well as clinical, EEG, and neuroimaging data. Of 125 patients referred for epilepsy surgical evaluation, 86 (69%) had some form of genetic testing. Of these, 18 (21%) had a pathogenic or likely pathogenic variant identified. Genes affected included NPRL3 (3 patients, all related), TSC2 (3 patients), KCNH1, CHRNA4, SPTAN1, DEPDC5, SCN2A, ARX, SCN1A, DLG4, and ST5. One patient had ring chromosome 20, one a 7.17p12 duplication, and one a 15q13 deletion. In six patients, suspected epileptogenic lesions were identified on brain MRI that were thought to be unrelated to the genetic finding. A specific medical therapy choice was allowed due to genetic diagnosis in three patients who did not undergo surgery. Obtaining a molecular diagnosis may dramatically alter management in pediatric patients with drug-resistant focal epilepsy. Genetic testing should be incorporated as part of standard investigations in the pre-surgical work-up of pediatric patients with drug-resistant focal epilepsy.


Asunto(s)
Epilepsia Refractaria , Pruebas Genéticas , Humanos , Niño , Epilepsia Refractaria/genética , Epilepsia Refractaria/cirugía , Epilepsia Refractaria/diagnóstico por imagen , Masculino , Femenino , Estudios Retrospectivos , Adolescente , Preescolar , Lactante , Electroencefalografía , Imagen por Resonancia Magnética , Epilepsias Parciales/genética , Epilepsias Parciales/cirugía , Epilepsias Parciales/diagnóstico por imagen , Epilepsias Parciales/diagnóstico , Cuidados Preoperatorios
10.
Seizure ; 117: 1-5, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38262122

RESUMEN

BACKGROUND: Research has shown gene ATN1 to be associated with the nuclear receptor signaling. Its mutations in an evolutionarily conserved histidine-rich motif may cause CHEDDA, short for congenital hypotonia, epilepsy, developmental delay and digital anomalies, a recently identified neurodevelopmental syndrome that could evolve into developmental and epileptic encephalopathy (DEE). Up to date, there have been reported less than 20 cases, whose clinical features and treatment are worth in-depth exploring. METHODS: The clinical characteristics and genetic data of an infant with CHEDDA and further DEE were analyzed, who carried a de novo ATN1 variant identified by trio whole-exome sequencing. The alike patients with such a neurodevelopmental syndrome and epileptic seizures were reviewed on the literature. RESULTS: The infant harboring a de novo missense mutation in ATN1 (c.3155A>C; p.His1052Pro) held almost all features of CHEDDA and presented with drug-resistant epileptic spasms, differing from one case previously reported with the same gene variant exhibiting milder seizures controlled easily. We further reviewed 11 CHEDDA patients with epileptic seizures in the literature and compared the correlation between abnormal cerebral structure and the incidence of intractable epilepsy among CHEDDA patients. Fortunately, this patient's seizures decreased remarkably after administering ketogenic diet (KD). CONCLUSION: CHEDDA patients have significant phenotypic differences, especially in the epilepsy severity and their drug resistance, even if they carry the same mutation hotspot. Ketogenic diet and other treatments like Topiramate should be recommended for ATN1-related refractory epilepsy based on their regulation on expression of cation-chloride cotransporters and cellular hyperpolarization.


Asunto(s)
Dieta Cetogénica , Humanos , Lactante , Espasmos Infantiles/genética , Espasmos Infantiles/dietoterapia , Masculino , Femenino , Mutación Missense , Epilepsia Refractaria/dietoterapia , Epilepsia Refractaria/genética , Proteínas del Tejido Nervioso/genética , Epilepsia/dietoterapia , Epilepsia/genética
11.
Brain ; 147(4): 1264-1277, 2024 Apr 04.
Artículo en Inglés | MEDLINE | ID: mdl-37939785

RESUMEN

Bottom-of-sulcus dysplasia (BOSD) is increasingly recognized as a cause of drug-resistant, surgically-remediable, focal epilepsy, often in seemingly MRI-negative patients. We describe the clinical manifestations, morphological features, localization patterns and genetics of BOSD, with the aims of improving management and understanding pathogenesis. We studied 85 patients with BOSD diagnosed between 2005-2022. Presenting seizure and EEG characteristics, clinical course, genetic findings and treatment response were obtained from medical records. MRI (3 T) and 18F-FDG-PET scans were reviewed systematically for BOSD morphology and metabolism. Histopathological analysis and tissue genetic testing were performed in 64 operated patients. BOSD locations were transposed to common imaging space to study anatomical location, functional network localization and relationship to normal MTOR gene expression. All patients presented with stereotyped focal seizures with rapidly escalating frequency, prompting hospitalization in 48%. Despite 42% patients having seizure remissions, usually with sodium channel blocking medications, most eventually became drug-resistant and underwent surgery (86% seizure-free). Prior developmental delay was uncommon but intellectual, language and executive dysfunction were present in 24%, 48% and 29% when assessed preoperatively, low intellect being associated with greater epilepsy duration. BOSDs were missed on initial MRI in 68%, being ultimately recognized following repeat MRI, 18F-FDG-PET or image postprocessing. MRI features were grey-white junction blurring (100%), cortical thickening (91%), transmantle band (62%), increased cortical T1 signal (46%) and increased subcortical FLAIR signal (26%). BOSD hypometabolism was present on 18F-FDG-PET in 99%. Additional areas of cortical malformation or grey matter heterotopia were present in eight patients. BOSDs predominated in frontal and pericentral cortex and related functional networks, mostly sparing temporal and occipital cortex, and limbic and visual networks. Genetic testing yielded pathogenic mTOR pathway variants in 63% patients, including somatic MTOR variants in 47% operated patients and germline DEPDC5 or NPRL3 variants in 73% patients with familial focal epilepsy. BOSDs tended to occur in regions where the healthy brain normally shows lower MTOR expression, suggesting these regions may be more vulnerable to upregulation of MTOR activity. Consistent with the existing literature, these results highlight (i) clinical features raising suspicion of BOSD; (ii) the role of somatic and germline mTOR pathway variants in patients with sporadic and familial focal epilepsy associated with BOSD; and (iii) the role of 18F-FDG-PET alongside high-field MRI in detecting subtle BOSD. The anatomical and functional distribution of BOSDs likely explain their seizure, EEG and cognitive manifestations and may relate to relative MTOR expression.


Asunto(s)
Epilepsia Refractaria , Epilepsias Parciales , Síndromes Epilépticos , Malformaciones del Desarrollo Cortical , Humanos , Fluorodesoxiglucosa F18 , Malformaciones del Desarrollo Cortical/genética , Epilepsias Parciales/diagnóstico por imagen , Epilepsias Parciales/genética , Epilepsias Parciales/patología , Epilepsia Refractaria/diagnóstico por imagen , Epilepsia Refractaria/genética , Epilepsia Refractaria/cirugía , Imagen por Resonancia Magnética/métodos , Convulsiones/complicaciones , Serina-Treonina Quinasas TOR , Proteínas Activadoras de GTPasa/genética
12.
Epilepsia Open ; 9(1): 424-431, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-37943122

RESUMEN

Focal cortical dysplasia (FCD) represents the most common cause of drug-resistant epilepsy in adult and pediatric surgical series. However, genetic factors contributing to severe phenotypes of FCD remain unknown. We present a patient with an exceptionally rapid development of drug-resistant epilepsy evolving in super-refractory status epilepticus. We performed multiple clinical (serial EEG, MRI), biochemical (metabolic and immunological screening), genetic (WES from blood- and brain-derived DNA), and histopathological investigations. The patient presented 1 month after an uncomplicated varicella infection. MRI was negative, as well as other biochemical and immunological examinations. Whole-exome sequencing of blood-derived DNA detected a heterozygous paternally inherited variant NM_006267.4(RANBP2):c.5233A>G p.(Ile1745Val) (Chr2[GRCh37]:g.109382228A>G), a gene associated with a susceptibility to infection-induced acute necrotizing encephalopathy. No combination of anti-seizure medication led to a sustained seizure freedom and the patient warranted induction of propofol anesthesia with high-dose intravenous midazolam and continuous respiratory support that however failed to abort seizure activity. Brain biopsy revealed FCD type IIa; this finding led to the indication of an emergency right-sided hemispherotomy that rendered the patient temporarily seizure-free. Postsurgically, he remains on antiseizure medication and experiences rare nondisabling seizures. This report highlights a uniquely severe clinical course of FCD putatively modified by the RANBP2 variant. PLAIN LANGUAGE SUMMARY: We report a case summary of a patient who came to our attention for epilepsy that could not be controlled with medication. His clinical course progressed rapidly to life-threatening status epilepticus with other unusual neurological findings. Therefore, we decided to surgically remove a piece of brain tissue in order to clarify the diagnosis that showed features of a structural brain abnormality associated with severe epilepsy, the focal cortical dysplasia. Later, a genetic variant in a gene associated with another condition, was found, and we hypothesize that this genetic variant could have contributed to this severe clinical course of our patient.


Asunto(s)
Encefalopatías , Epilepsia Refractaria , Epilepsia , Displasia Cortical Focal , Chaperonas Moleculares , Proteínas de Complejo Poro Nuclear , Estado Epiléptico , Niño , Preescolar , Humanos , Masculino , Progresión de la Enfermedad , ADN , Epilepsia Refractaria/genética , Epilepsia Refractaria/cirugía , Epilepsia/complicaciones , Midazolam , Estado Epiléptico/genética , Estado Epiléptico/cirugía
14.
Eur J Paediatr Neurol ; 47: 80-87, 2023 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-37812946

RESUMEN

OBJECTIVE: Although genetic causes of drug-resistant focal epilepsy and selected focal malformations of cortical development (MCD) have been described, a limited number of studies comprehensively analysed genetic diagnoses in patients undergoing pre-surgical evaluation, their outcomes and the effect of genetic diagnosis on surgical strategy. METHODS: We analysed a prospective cohort of children enrolled in epilepsy surgery program over January 2018-July 2022. The majority of patients underwent germline and/or somatic genetic testing. We searched for predictors of surgical outcome and positive result of germline genetic testing. RESULTS: Ninety-five patients were enrolled in epilepsy surgery program and 64 underwent resective epilepsy surgery. We ascertained germline genetic diagnosis in 13/74 patients having underwent germline gene testing (pathogenic or likely pathogenic variants in CHRNA4, NPRL3, DEPDC5, FGF12, GRIA2, SZT2, STXBP1) and identified three copy number variants. Thirty-five patients underwent somatic gene testing; we detected 10 pathogenic or likely pathogenic variants in genes SLC35A2, PTEN, MTOR, DEPDC5, NPRL3. Germline genetic diagnosis was significantly associated with the diagnosis of focal epilepsy with unknown seizure onset. SIGNIFICANCE: Germline and somatic gene testing can ascertain a definite genetic diagnosis in a significant subgroup of patients in epilepsy surgery programs. Diagnosis of focal genetic epilepsy may tip the scales against the decision to proceed with invasive EEG study or surgical resection; however, selected patients with genetic focal epilepsies associated with MCD may benefit from resective epilepsy surgery and therefore, a genetic diagnosis does not disqualify patients from presurgical evaluation and epilepsy surgery.


Asunto(s)
Epilepsia Refractaria , Epilepsias Parciales , Epilepsia , Malformaciones del Desarrollo Cortical , Niño , Humanos , Estudios Prospectivos , Epilepsia/genética , Epilepsia/cirugía , Epilepsia/complicaciones , Epilepsias Parciales/complicaciones , Pruebas Genéticas , Epilepsia Refractaria/diagnóstico , Epilepsia Refractaria/genética , Epilepsia Refractaria/cirugía , Malformaciones del Desarrollo Cortical/genética , Proteínas Activadoras de GTPasa/genética , Factores de Crecimiento de Fibroblastos/genética , Proteínas del Tejido Nervioso/genética
15.
BMC Neurol ; 23(1): 338, 2023 Sep 26.
Artículo en Inglés | MEDLINE | ID: mdl-37749503

RESUMEN

BACKGROUND: Focal cortical dysplasia (FCD) is a malformation of cortical development that causes medical refractory seizures, and one of the main treatments may be surgical resection of the affected area of the brain. People affected by FCD may present with seizures of variable severity since childhood. Despite many medical treatments available, only surgery can offer cure. The pathophysiology of the disease is not yet understood; however, it is known that several gene alterations may play a role. The WNT/ß-catenin pathway is closely related to the control and balance of cell proliferation and differentiation in the central nervous system. The aim of this study was to explore genes related to the WNT/ß-catenin pathway in lesional and perilesional brain tissue in patients with FCD type II. METHODS: Dysplastic and perilesional tissue from the primary dysplastic lesion of patients with FCD type IIa were obtained from two patients who underwent surgical treatment. The analysis of the relative expression of genes was performed by a qRT-PCR array (super array) containing 84 genes related to the WNT pathway. RESULTS: Our results suggest the existence of molecular alteration in some genes of the WNT pathway in tissue with dysplastic lesions and of perilesional tissue. We call this tissue of normal-appearing adjacent cortex (NAAC). Of all genes analyzed, a large number of genes show similar behavior between injured, perilesional and control tissues. However, some genes have similar characteristics between the perilesional and lesional tissue and are different from the control brain tissue, presenting the perilesional tissue as a molecularly altered material. CONCLUSION: Our results suggest that the perilesional area after surgical resection of tissue with cortical dysplasia presents molecular changes that may play a role in the recurrence of seizures in these patients. The perilesional tissue should receive expanded attention beyond the somatic mutations described and associated with FCD, such as mTOR, for example, to new signaling pathways that may play a crucial role in seizure recurrence.


Asunto(s)
Epilepsia Refractaria , Displasia Cortical Focal , Humanos , Niño , Epilepsia Refractaria/genética , Epilepsia Refractaria/cirugía , Vía de Señalización Wnt/genética , beta Catenina , Convulsiones
16.
Zhonghua Yi Xue Yi Chuan Xue Za Zhi ; 40(10): 1204-1210, 2023 Oct 10.
Artículo en Chino | MEDLINE | ID: mdl-37730218

RESUMEN

OBJECTIVE: To analyze the characteristics of genetic variants among children with refractory epilepsy (RE). METHODS: One hundred and seventeen children with RE who had presented at the Affiliated Jinhua Hospital of Zhejiang University School of Medicine from January 1, 2018 to November 21, 2019 were selected as the study subjects. The children were divided into four groups according to their ages of onset: < 1 year old, 1 ~ 3 years old, 3 ~ 12 years old, and >= 12 years old. Clinical data and results of trio-whole exome sequencing were retrospectively analyzed. RESULTS: In total 67 males and 50 females were included. The age of onset had ranged from 4 days to 14 years old. Among the 117 patients, 33 (28.21%) had carried pathogenic or likely pathogenic variants. The detection rates for the < 1 year old, 1 ~ 3 years old and >= 3 years old groups were 53.85% (21/39), 12.00% (3/25) and 16.98% (9/53), respectively, with a significant difference among the groups (χ2 = 19.202, P < 0.001). The detection rates for patients with and without comorbidities were 33.33% (12/36) and 25.93% (21/81), respectively (χ2 = 0.359, P = 0.549). Among the 33 patients carrying genetic variants, 27 were single nucleotide polymorphisms (SNPs) or insertion/deletions (InDels), and 6 were copy number variations (CNVs). The most common mutant genes were PRRT2 (15.15%, 5/33) and SCN1A (12.12%, 4/33). Among children carrying genetic variants, 72.73% (8/11) had attained clinical remission after adjusting the medication according to the references. CONCLUSION: 28.21% of RE patients have harbored pathogenic or likely pathogenic variants or CNVs. The detection rate is higher in those with younger age of onset. PRRT2 and SCN1A genes are more commonly involved. Adjusting medication based on the types of affected genes may facilitate improvement of the remission rate.


Asunto(s)
Variaciones en el Número de Copia de ADN , Epilepsia Refractaria , Lactante , Femenino , Masculino , Humanos , Niño , Recién Nacido , Preescolar , Epilepsia Refractaria/genética , Estudios Retrospectivos , Polimorfismo de Nucleótido Simple
17.
Epilepsia ; 64(12): 3113-3129, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-37703096

RESUMEN

Drug discovery in epilepsy began with the finding of potassium bromide by Sir Charles Locock in 1857. The following century witnessed the introduction of phenotypic screening tests for discovering antiseizure medications (ASMs). Despite the high success rate of developing ASMs, they have so far failed in eliminating drug resistance and in delivering disease-modifying treatments. This emphasizes the need for new drug discovery strategies in epilepsy. RNA-based drugs have recently shown promise as a new modality with the potential of providing disease modification and counteracting drug resistance in epilepsy. RNA therapeutics can be directed either toward noncoding RNAs, such as microRNAs, long noncoding RNAs (ncRNAs), and circular RNAs, or toward messenger RNAs. The former show promise in sporadic, nongenetic epilepsies, as interference with ncRNAs allows for modulation of entire disease pathways, whereas the latter seem more promising in monogenic childhood epilepsies. Here, we describe therapeutic strategies for modulating disease-associated RNA molecules and highlight the potential of RNA therapeutics for the treatment of different patient populations such as sporadic, drug-resistant epilepsy, and childhood monogenic epilepsies.


Asunto(s)
Epilepsia Refractaria , Epilepsia , MicroARNs , Humanos , Niño , Epilepsia/tratamiento farmacológico , Epilepsia/genética , MicroARNs/genética , Epilepsia Refractaria/tratamiento farmacológico , Epilepsia Refractaria/genética , Descubrimiento de Drogas , Resistencia a Medicamentos
18.
Epilepsy Res ; 196: 107221, 2023 10.
Artículo en Inglés | MEDLINE | ID: mdl-37696194

RESUMEN

INTRODUCTION: Researchers, clinicians and patients are turning to new innovations in research and clinical practice to further their knowledge in the genetic domain and improve diagnostics or treatment. However, with increased knowledge in genetics, societal issues may arise. Being conscious of these issues is crucial in order to implement standardized and efficient testing on a wider scale that is accessible to a greater number of individuals while simultaneously returning test results, including incidental findings, in a timely manner. METHODS: Within the framework of a genomics research project, we invited 20 participants who suffer from refractory epilepsy to provide insight on their personal experiences with epilepsy, as well as their thoughts on receiving Whole Genome Sequencing (WGS) results and with whom they would feel comfortable sharing these results with. RESULTS: All participants had their own unique experience with epilepsy, such as how they handled their diagnosis, their struggles following the diagnosis, the healthcare services they received, how they shared their diagnosis with others, and how they managed stigmatization from others. Most participants would be eager to know their WGS results, whether the results be related to epilepsy (n = 19), response to pharmaceutical drugs including AEDs (n = 16), comorbidities (n = 19) and incidental findings (n = 15). CONCLUSION: Our findings reinforce the need to improve access to genetic testing for epilepsy patients in clinical settings. Furthermore, while acquiring more genetic knowledge (i.e. WGS) about epilepsy can provide answers for the affected population, it also requires the simultaneous involvement of several medical disciplines, with greater emphasis on genetic and psychological counseling.


Asunto(s)
Epilepsia Refractaria , Humanos , Adulto , Epilepsia Refractaria/diagnóstico , Epilepsia Refractaria/genética , Motivación , Ansiedad , Emociones , Secuenciación Completa del Genoma
19.
Neurobiol Dis ; 187: 106299, 2023 Oct 15.
Artículo en Inglés | MEDLINE | ID: mdl-37739137

RESUMEN

De novo somatic (post-zygotic) gene mutations affecting neuroglial progenitor cell types in embryonic cerebral cortex are increasingly identified in patients with drug resistant epilepsy (DRE) associated with malformations of cortical development, in particular, focal cortical dysplasias (FCD). Somatic variants in at least 16 genes have been linked to FCD type II, all encoding components of the mechanistic target of rapamycin (mTOR) pathway. FCD type II is characterized histopathologically by cytomegalic dysmorphic neurons and balloon cells. In contrast, the molecular pathogenesis of FCD I subtypes is less well understood, and histological features are characterized by alterations in columnar or laminar organization without cytomegalic dysmorphic neurons or balloon cells. In 2018, we reported somatic mutations in Solute Carrier Family 35 member A2 (SLC35A2) linked to DRE underlying FCD type I and subsequently to a new histopathological phenotype: excess oligodendrocytes and heterotopic neurons in subcortical white matter known as MOGHE (mild malformation of cortical development with oligodendroglial hyperplasia). These discoveries opened the door to studies linking somatic mutations to FCD. In this review, we discuss the biology of SLC35A2 somatic mutations in epilepsy in FCD and MOGHE, and insights into SLC35A2 epilepsy pathogenesis, describing progress to date and critical areas for investigation.


Asunto(s)
Epilepsia Refractaria , Epilepsia , Displasia Cortical Focal , Malformaciones del Desarrollo Cortical de Grupo I , Malformaciones del Desarrollo Cortical , Humanos , Epilepsia Refractaria/genética , Epilepsia/genética , Epilepsia/patología , Malformaciones del Desarrollo Cortical/genética
20.
Epilepsia Open ; 8(4): 1588-1595, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-37574648

RESUMEN

Epilepsy surgery in genetic drug-resistant epilepsy is a debated subject as more histological and molecular data are available. We retrospectively collected data from focal drug-resistant epilepsy patients that underwent stereoelectroencephalography (SEEG) invasive recordings. Patients with nonlesional brain imaging or in whom a first epilepsy surgery failed to control seizures were selected. We computed and displayed the intracranial ictal onset activity pattern on structural imaging. Patients underwent epilepsy gene panel testing, next generation sequencing-NGS. Of 113 patients, 13 underwent genetic testing, and in 6 patients, a mechanistic target of rapamycin pathway gene germline mutation (mTOR) was identified. Brain imaging was nonlesional except for one patient in whom two abnormalities suggestive of focal cortical dysplasia (FCD) were found. Patients underwent tailored brain surgery based on SEEG data, tissue analysis revealed FCD and postsurgical outcome was favorable. Our findings are similar to previous case series suggesting that epilepsy surgery can be a treatment option in patients with mTOR pathway mutation. In patients with mTOR pathway mutation, the postsurgical outcome is favorable if complete resection of the epileptogenic zone is performed. Electrophysiological seizure onset patterns in FCDs associated with mTOR pathway mutations display low-voltage fast activity as previously described.


Asunto(s)
Epilepsia Refractaria , Epilepsia , Displasia Cortical Focal , Humanos , Estudios Retrospectivos , Electroencefalografía/métodos , Epilepsia/genética , Epilepsia/complicaciones , Convulsiones/genética , Epilepsia Refractaria/genética , Epilepsia Refractaria/cirugía , Mutación de Línea Germinal , Serina-Treonina Quinasas TOR/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA